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Abstract: In this paper, a new four-parameter distribution is introduced. Moments, conditional moments and moment generating 

function of the new distribution including are presented. Estimation of its parameters are studied. Two real data applications are 

described to show its superior performance versus some known lifetime models. 
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1. INTRODUCTION  

The Lindley distribution is important for modeling 

data in biology, medicine and engineering. In recent years, 

there have been many studies to obtain a new distribution 

based on medications of the Lindley distribution for 

fitting such kinds of data. One of the most popular 

modifications are Marshal-Olkin distribution, 

Kumaraswamy distribution quadratic rank transmutation 

map. The main idea of this mapping is to get more 

flexible structures than the base distribution. Ghitany et al. 

(2008) studied the properties of the Lindley distribution 

under a carefully mathematical treatment. They also 

showed in a numerical example that the Lindley 

distribution gives better modeling for waiting times and 

survival times data than the exponential distribution. The 

use of the Lindley distribution could be a good alternative 

to analyze lifetime data within the competing risks 

approach as compared with the use of standard 

Exponential or even the Weibull distribution commonly 

used in this area. Many researchers have studied about 

Lindley distributions.  Merovci (2013) proposed a 

transmuted lindley distribution and applied it to bladder 

cancer data. Merovci and Elbatal (2014) introduced a 

transmuted Lindley- geometric distribution and discussed 

its various properties. They gave an application on real 

data set which represents the waiting times (in minutes) 
before service of 100 bank customers to show that the 

transmuted Lindley-geometric distribution can be a better 

model than one based on the Lindley geometric 

distribution and Lindley distribution. Elbatal and Elgarhy 

(2013) obtained. transmuted quasi Lindley distribution 

and discussed the least squares, weighted least squares 

and the maximum likelihood estimation of the parameters 

of this distribution. Mansour and Mohamed (2015) have 

introduced a generalization of transmuted Lindley 

distribution based on a new family of life time distribution 

and showed that this distribution provided a better model 

for bladder cancer data than the amongst distributions 

such as Transmuted Lindley, Exponentiated Lindley, 

Lindley, Weighted Lindley and Modified Weibull. There 

are also other studies about different types of Lindley 

distributions considered by many researchers such as 

Aryal and Tsokos (2011) and Abdul-Moniem and Seham 

(2015). Alizadeh et al. (2013) introduced a new family of 

continuous distributions called the Kumaraswamy 

Marshal-Olkin generalized family of distributions. They 

proposed a new extension of the MO family for a given 

baseline distribution with cdf (𝑥; 𝜁)  , survival function 

𝐺̅(𝑥; 𝜁) = 1 − 𝐺(𝑥; 𝜁)  and pdf 𝑔(𝑥; 𝜁)  depending on a 

parameter vector 𝜁 . the cdf of the new Kumaraswamy 

Marshal-Olkin (“KwMO”) family of distributions by 

F(x; a, b, p, ζ) = 1 − [1 − (
𝐺(𝑥; 𝜁)

1 − 𝑝𝐺(𝑥; 𝜁)̅̅ ̅̅ ̅̅ ̅̅ ̅
)

a

]

b

 

 

(1) 

For 𝑥 > 0,   𝑎 > 0,   𝑏 > 0  𝑎𝑛𝑑 𝑝̅ > 0.  
 

The corresponding probability density function is, 

 

𝑓(𝑥; 𝛼, 𝛽, 𝜃, 𝜁) =
𝑎𝑏(1 − 𝑝)𝑔(𝑥; 𝜁)𝐺(𝑥; 𝜁)𝑎−1

[1 − 𝑝𝐺̅(𝑥; 𝜁)]𝛼+1

×  (1 − [
𝐺(𝑥; 𝜁)

1 − 𝑝𝐺̅(𝑥; 𝜁)
]

𝛼

)

𝑏−1

. 

  

 

 

(2) 
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The rest of the article is organized as follows. In 

Section2, introduces the new four-parameter distribution 

according to Kumaraswamy Marshal-Olkin G-family. In 

section 3, The Expansion for the pdf and the cdf 

Functions is derived. Moments, conditional moments and 

moment generating function of the new distribution 

including are presented in Section 4. In section 5, we 

introduce the method of likelihood estimation as point 

estimation Finally, we fit the distribution to real data set to 

examine it. 

2. A NEW FOUR-PARAMETER DISTRIBUTION 

The Lindley distribution was introduced by Lindley 
(1958) . A random variable X is said to have the Lindley 
distribution with parameter θ if its probability density is 
defined as 

f(x) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0. (3) 

The corresponding cumulative distribution function 
(cdf) is: 

F(x; a, b, p, θ) =  

        1 − [1 − (
1 −

θ + 1 + θx
θ + 1

e−θx

1 − 𝑝 (1 −
θ + 1 + θx

θ + 1
e−θx)

)

a

]

b

, 

 

(5) 

 

Hence, the pdf of Kumaraswamy Marshal-Olkin 
Lindley distribution 

𝑓(𝑥; a, b, p, θ) =
𝑎𝑏(1 − 𝑝)𝜃2(1 + 𝑥)𝑒−𝜃𝑥 (1 −

𝜃 + 1 + 𝜃𝑥
𝜃 + 1

𝑒−𝜃𝑥)
𝑎−1

(𝜃 + 1) [1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥)]

𝑎+1   

 

                    × (1 − [
1 −

𝜃 + 1 + 𝜃𝑥
𝜃 + 1

𝑒−𝜃𝑥

1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥)

]

𝑎

)

𝑏−1

. 

 

(6) 

 

 

Where for 𝑥 > 0, 𝑎, 𝑏, 𝜃 𝑎𝑛𝑑 𝑝̅ > 0we shall refer to 
the distribution given by (5) and (6) as the Kumaraswamy 
Marshall-Olkin Lindley (KWMOL). 

The failure rate function associated with (6) is given 
by 

ℎ(𝑥; a, b, p, θ) =
𝑎𝑏(1 − 𝑝) θ2(1 + x)e−θx (1 −

𝜃 + 1 + 𝜃𝑥
𝜃 + 1

𝑒−𝜃𝑥)
𝑎−1

(θ + 1) [1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥)]

𝛼+1   

               × (1 − [
1 −

θ + 1 + θx
θ + 1

e−θx

1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥

𝜃 + 1
𝑒−𝜃𝑥)

]

𝛼

)

−1

. 

 

(7) 

Figure 1 (a) and (b) provide some plots of the 
KWMOL density curves for different values of the 
parameters 𝑎, 𝑏, 𝜃 and 𝑝. 

 

(a) 

 

(b) 

Figure 1.  Plots of the KWMOL density function for some 

parameter values.(a) For 𝒂 = 𝟑𝟏, , 𝒃 = 𝟐, 𝜽 = 𝟑, 𝒑 = 𝟎. 𝟑 (blue 

line), 𝒂 = 𝟓, 𝒃 = 𝟑, 𝜽 = 𝟎. 𝟖, 𝒑 = 𝟎. 𝟒  (red line), 𝒂 = 𝟏𝟏, 𝒃 =. 𝟖, 𝜽 =
𝟎. 𝟏𝟏, 𝒑 = 𝟎. 𝟏𝟐  (orange line)𝒂 = 𝟗, 𝒃 = 𝟐, 𝜽 = 𝟎. 𝟗, 𝒑 = 𝟎. 𝟖  (green 

line) 𝒂 = 𝟏. 𝟓, 𝒃 = 𝟒, 𝜽 = 𝟏. 𝟓, 𝒑 = 𝟎. 𝟑  (green yellow line),  𝒂 =
𝟏𝟏, 𝒃 = 𝟑, 𝜽 =. 𝟗, 𝒑 = 𝟎. 𝟔 (hot pink line) (b)  For 𝒂=1,𝒃=4,𝜽=.7 and 

p=0.5 (blue line), 𝒂=11, 𝒃=2 , 𝜽=0.6 and p=0.8 (red line),𝒂=9, 𝒃=,7 

,  𝜽  =0.11 and p=0.12 (orange line)  𝒂=7, 𝒃=2 , 𝜽 =0.9 and p=0.9 

(green line),𝒂=6, 𝒃=3 , 𝜽=1.6 and p=0.7 (green yellow line), 𝒂=3, 

𝒃=.7 ,𝜽=3 and p=0.8 (hot pink line). 

Figure 2 does the same for the associated hazard rate 
function. 

 

(a) 
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(b) 

Figure 2.  Plots of the kwmol hazard rate function for some 

parameter values. .(a) For 𝒂 =0.9, 𝒃 =4, 𝜽 =2 and p=.6 (blue 

line), 𝒂=2, , 𝒃=4, 𝜽=.7and p=.5 (red line), 𝒂=20, 𝒃=3, 𝜽=.7 and p=0.6 

(orange line) 𝒂=9 𝒃=2, 𝜽=0.8and p=0.4 (green line), 𝒂=0.7,  𝒃=1.5, 

𝜽=2.2 and p=0.9 (green yellow line),𝒂=4, 𝒃=3, 𝜽=.8and p=0.9 (hot 

pink line) (b)  For 𝒂=0.8, 𝒃=3, 𝜽=1 and p=0.2 (blue line), 𝒂=1, 𝒃=2, 

𝜽=0.5 and p=0.4 (red line), 𝒂=19, 𝒃=2, 𝜽=0.8 and p=0.6 (orange 

line) 𝒂=5, 𝒃=3, 𝜽=0.5and p=0.3 (green line), 𝒂=0.4,𝒃=1, 𝜽=1.2 and 

p=0.5 (green yellow line),𝒂=5, 𝒃=3, 𝜽=0.7 and p=0.6 (hot pink line). 

3. EXPANSION FOR THE  PDF  FUNCTION  

In this section we give another expression for the pdf 
function using the Maclaurin and Binomial expansions for 
simplifying the pdf cdf form. 

Using the expansions 

(1 − 𝑧)−𝑏 = ∑ (
−𝑏

𝑖
) (−𝑧)𝑖∞

𝑖=0 ,     |𝑧| < 1, 
  

(8) 

e−𝑥 = ∑
(−𝑥)𝑖

𝑖!

∞

𝑖=0

, 

and 

 

 

(9) 

 

 

(𝑎 + 𝑏)𝑘 = ∑ (
𝑘
𝑖

) 𝑏𝑗𝑎𝑘−𝑗

𝑘

𝑖=0

. 
 

(10) 

Using (8),(9) and (10) we can write (6) as 

𝑓(𝑥; 𝑎, 𝑏, 𝜃. 𝑝) = ∑ ∑ ∑ 𝐴𝑖:𝑚

𝑙+1

𝑚=0

𝑗+𝑘

𝑙=0

∞

𝑖,𝑗,𝑘=0

𝑥𝑚𝑒−𝜃𝑥(𝑗+𝑘+1). 

 

(11) 

Where 𝐴𝑖:𝑚is a constant term given by: 

𝐴𝑖:𝑚 =
(−1)𝑖+𝑗(𝑙 + 1)(𝑗 + 𝑘)! 𝛤(𝑏)𝛤(𝑎𝑖 + 𝑎 + 2)𝑎. 𝑏. (1 − 𝑝)𝜃2+𝑙𝑝𝑘

𝑚! (𝑙 − 𝑚 + 1)! 𝑖!   𝑗! 𝑘!  (𝑗 + 𝑘𝑙)! (𝑎𝑖 + 𝑎)𝛤(𝑎𝑖 + 𝑎 − 𝑗)  (𝜃 + 1)𝑗+1. 

 

4. STATISTICAL PROPERTIES 

In this section, we derive moments, conditional 
moments, Moment Generating Function of the kwmol 
distribution. 

 

4.1 Moments 

The rth non-central moments or (moments about the 
origin) of the kwmol under using equation (11) is given 
by: 

μr
′ = ∫ xr [ ∑ ∑ ∑ 𝐴𝑖:𝑚

𝑙+1

𝑚=0

𝑗+𝑘

𝑙=0

∞

𝑖,𝑗,𝑘=0

𝑥𝑚𝑒−𝜃𝑥(𝑗+𝑘+1)] dx

∞

0

, 

 

(13) 

then 

μr
′ = ∑ ∑ ∑ 𝑨𝒊:𝒎

𝒍+𝟏

𝒎=𝟎

𝒋+𝒌

𝒍=𝟎

∞

𝒊,𝒋,𝒌=𝟎

𝛤(𝑚 + 𝑟 + 1)

[𝜃(𝑗 + 𝑘 + 1)]𝑚+𝑟+
. 

     
(14) 

 

 

4.2 Conditional moments 

For lifetime models, it is useful to know the conditional 
moments defined as 𝐸(𝑥𝑟|𝑥 > 𝑡), 

𝐸(𝑥𝑟|𝑥 > 𝑡) =
1

[1 − 𝐺(𝑡)]
∫ 𝑥𝑟

∞

𝑡

𝑓(𝑥)𝑑𝑥 

 

(15) 

using equation (11) the conditional moments is, 

𝐸(𝑥𝑟|𝑥 > 𝑡)

=
1

[1 − 𝐺(𝑡)]
[ ∑ ∑ ∑ 𝑨𝒊:𝒎

𝒍+𝟏

𝒎=𝟎

𝒋+𝒌

𝒍=𝟎

∞

𝒊,𝒋,𝒌=𝟎

𝛤𝑡(𝑚 + 𝑟 + 1)

[𝜃(𝑗 + 𝑘 + 1)]𝑚+𝑟+
], 

 

(16) 

where Γ𝑡(𝑎) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥
∞

𝑡
is the upper incomplete 

gamma function. 

 

4.3 The moment generating function 

The moment generating function, 𝑀𝑥(𝑡), can be easily 
obtained as: 

𝑀𝑥(t) = ∫ etxf(x)dx,

∞

0

 

 

 

(17) 

𝑀𝑥(𝑡) = ∑ ∑ ∑ 𝑨𝒊:𝒎

𝒍+𝟏

𝒎=𝟎

𝒋+𝒌

𝒍=𝟎

∞

𝒊,𝒋,𝒌=𝟎

∫ xme−θx(j+k+1)+txd𝑥,

∞

𝟎

 

 

 

(18) 

𝑀𝑥(𝑡) = ∫ 𝑥𝑚

∞

0

𝑒−𝑥(𝜃(𝑗+𝑘+1)+𝑡) 𝑑𝑥 

 

(19) 

then, the moment generating function of the kwmol 
distribution is given by, 

𝑀𝑥(𝑡) = ∑ ∑ ∑ 𝐴𝑖:𝑚

𝑙+1

𝑚=0

𝑗+𝑘

𝑙=0

∞

𝑖,𝑗,𝑘=0

𝛤(𝑚 + 1)

[𝜃(𝑗 + 𝑘 + 1) + 𝑡]𝑚+1
. 

 

(20) 
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5. ESTIMATION OF THE PARAMETERS 

In this section we introduce the method of likelihood to 
estimate the parameters involved. The maximum 
likelihood estimators (MLEs) for the parameters of 
Kumaraswamy Marshal-Olkin Lindley 
KWMOL(𝑎, 𝑏, 𝜃, 𝑝) is discussed in this section. Consider 
the random sample x1, x2, . . . , xn  of size n  from 
KWMOL(𝑎, 𝑏, 𝜃, 𝑝) with probability density function in 
(6), then the likelihood function can be expressed as 
follows 

𝑙 =
𝑎𝑛𝑏𝑛(1 − 𝑝)𝑛𝜃2n ∏ (1 + 𝑥𝑖)n

i=1 𝑒−𝜃 ∑ 𝑥𝑖
𝑛
𝑖=1

(𝜃 + 1)n ∏ [1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥𝑖

𝜃 + 1
𝑒−𝜃𝑥𝑖)]

𝑎+1
𝑛
𝑖=1

 

× ∏ (1 −
𝜃 + 1 + 𝜃𝑥𝑖

𝜃 + 1
𝑒−𝜃𝑥𝑖)

𝑎−1𝑛

𝑖=1

 
 

× ∏ (1 − [
1 −

𝜃 + 1 + 𝜃𝑥𝑖
𝜃 + 1

𝑒−𝜃𝑥𝑖

1 − 𝑝 (
𝜃 + 1 + 𝜃𝑥𝑖

𝜃 + 1
𝑒−𝜃𝑥𝑖)

]

𝑎

)

𝑛

𝑖=1

𝑏−1

. 

 

(21) 

Where 

Θi =
𝜃 + 1 + 𝜃𝑥𝑖

𝜃 + 1
𝑒−𝜃𝑥𝑖  

Hence, the log-likelihood function, ℒ, becomes: 

ℒ = 𝑛 𝑙𝑛𝑎 + 𝑛 ln 𝑏 + 𝑛 𝑙𝑛(1 − 𝑝) + 2𝑛 ln 𝜃 ∑ 𝑙𝑛

𝑛

𝑖=1

 (1 + 𝑥𝑖) 

       −𝜃 ∑ 𝑥𝑖 + (𝑎 − 1) ∑ 𝑙𝑛

𝑛

𝑖=1

(1 − Θi) − 𝑛 𝑙𝑛(𝜃 + 1) 

𝑛

𝑖=1

 

         −(𝑎 + 1) 𝑙𝑛(1 − 𝑝𝛩𝑖) + (𝑏 − 1) ∑ 𝑙𝑛 (1 − [
𝑛

𝑖=1

1 − 𝛩𝑖

1 − 𝑝𝛩𝑖
]𝑎)  (22) 

Therefore, the MLEs of 𝑎, 𝑏, 𝜃 and 𝑝 must satisfy the 
following equations: 

𝜕ℒ

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑛

𝑛

𝑖=1
(1 − Θi) − 𝑙𝑛(1 − 𝑝Θi) 

      −(𝑏 − 1) ∑
(

1 − Θi
1 − 𝑝Θi

)𝑎𝑙𝑛(
1 − Θi

1 − 𝑝Θi
)

(1 − (
1 − Θi

1 − 𝑝Θi
)𝑎)

𝑛

𝑖=1

, 

 

(23) 

 

𝜕ℒ

𝜕𝑏
=

𝑛

𝑏
+ ∑ 𝑙𝑛

𝑛

𝑖=1
(1 − [

1 − Θi

1 − 𝑝Θi

]𝑎), 
 
(24) 

 

𝜕ℒ

𝜕𝑝
=

−𝑛

(1 − 𝑝)
+ (𝑎 + 1)

Θi

1 − 𝑝Θi

 

   +(𝑏 − 1) ∑
𝑎[

1 − Θi
1 − 𝑝Θi

]𝑎−1(
(1 − Θi)Θi

(1 − 𝑝Θi)
2)

1 − (
1 − Θi

1 − 𝑝Θi
)𝑎

𝑛

𝑖=1

, 

 

(25) 

and 

𝜕ℒ

𝜕𝜃
=

2𝑛

θ
− ∑ xi

n

𝑖=1

+ (a − 1) ∑

∂Θi

∂θ
(1 − Θi)

−
n

θ + 1

n

𝑖=1

 

            +(a + 1)
p

∂Θi

∂θ
(1 − pΘi)

 

        +(𝑏 − 1) ∑
(1 − pΘi)

∂Θi

∂θ
+ (1 − Θi)p

∂Θi

∂θ

[1 − (
1 − Θi

1 − 𝑝Θi
)𝑎](1 − pΘi)

2
.

n

i=1

 

 

(26) 

The maximum likelihood estimator 𝜗̂ = (𝑎̂, 𝜃̂, 𝑏̂, 𝑝̂) of 

𝜗 = (𝑎, 𝜃, 𝑏, 𝑝)  is obtained by solving the nonlinear 

system of equations (23) through (26). It is usually more 
convenient to use nonlinear optimization algorithms such 
as quasi-Newton algorithm to numerically maximize the 
log-likelihood function.  

6. APPLICATION 

In this section, we use two real data sets to show that 
the Kumaraswamy Marshal-Olkin Lindley (KWMOL) 
distribution can be a better model than nested and non-
nested models.  

A. Data Set 1 

The following data reported by Badar and Priest 
(1982), which represents the strength measured in GPa for 
single carbon fibers and impregnated at gauge lengths of 
1, 10, 20 and 50 mm. Impregnated tows of 100 fibers 
were tested at gauge lengths of 20, 50, 150 and 300 mm. 
Here, we consider that the data set of single fibers of 20 
mm in gauge with a sample of size 63. The data are: 
1.901,2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 
2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 
2.575,2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 
2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 
3.030,3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 
3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 
3.493,3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 
3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

In order to compare the two distribution models, we 

consider criteria like −𝟐𝓵̂ ,AIC, CAIC, HQIC, BIC, 
𝑾∗and 𝑨∗The better distribution corresponds to smaller 
KS,−2ℒ, AIC and AICC values.. These numerical results 
are obtained using R. 
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(a) 

 

(b) 

Figure 3.   (a) Estimated densities of the KWMOL, L, PL, E,W, MOPL 

, MOW, KWMW and KWPL  distributions of data set 1.(b) Estimated 

cdf function from the fitted the KWMOL, L, PL, ,E, W , 

KWMW,KWPL, MOPL, MOW and the empirical cdf for the data set 1. 

 

 

Figure 4.  Probability plots for the fits KWMOL, L, PL, E, W, MOPL , 
MOW, KWMW and KWPL  distributions of data set 1. 

 

B. Data Set 2 

The data set is obtained from Merovci (2013). The 
data are the strengths of 1.5 cm glass fibres, measured at 
the National Physical Laboratory, England. Unfortunately, 
the units of measurement are not given in the paper. Some 
summary statistics for the data are as follows: 

Min.    1st Qu.  Median    Mean   3rd Qu.    Max.  

 0.550   1.375      1.590      1.507      1.685     2.240 

 

(a) 

 

(b) 

Figure 5.  (a) Estimated densities of the kwmol, L, PL, E,W, MOW , 

MOPL, KWMW and KWPL  distributions of data set 1. for the data set 

2. (b) Estimated cdf function from the fitted the kwmol, L, PL, E,W, 

MOPL , MOW, KWMW, KWPL and the empirical cdf for the data set 
2. 
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Figure 6.  Probability plots for the fits kwmol, L, PL, E,W, MOW , 

KWMW, MOPLKWPL distributions of data set 2. 

As we can see from Tables (1) and (3), our model with 
smallest values of AIC, AICC, BIC, HQIC𝑊∗, 𝐴∗and K-S 
test statstic best fits the data. Figures (3) and (5) shows the 
empirical distribution compared to the rival models and 
the fitted densities against the data. We hope that the 
proposed distribution will serve as an alternative model to 
other models available in the literature. 
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TABLE I.  THESTATISTICS−𝟐𝓵̂,AIC, CAIC, HQIC, BIC, 𝑾∗
AND 𝑨∗

 FOR THE STRENGTH DATA. 

Model −𝟐𝓵̂ AIC CAIC BIC HQIC 𝑾∗ 𝑨∗ KS p-value 

KMOL 56.423 120.846 121.53 129.418 124.217 0.064 0.344 0.082, 0.791 

L 121.357 244.7 244.08 246.858 245.558 0.060 0.377 0.430, 1.394 

PL 59.860 123.7 123.92 128.006 125.406 0.096 0.673 0.089 0.691 

E 133.445 268.8 268.95 271.034 269.734 0.058 0.362 0.485 2.408 

W 61.956 127.9 128.11 132.200 129.599 0.128 0.892 0.087 0.719 

MOPL 99.540 193 192.67 186.651 190.552 9876.0 0.235 0.242 0.02 

MOW 57.499 120.9 121.4 127.429 123.528 0.077 0.451 0.088 0.708 

KWMW 55.992 121.985 123.03 132.700 126.199 0.0495 0.274 0.074 0.879 

KWPL 61.654 131.309 131.99 139.881 134.680 0.099 0.697 0.120 0.322 

 

TABLE II.  MLES AND THEIR CORRESPONDING STANDARD ERRORS (IN PARENTHESES) FOR THE STRENGTH DATA. 

 

 

 

 

 

 

 

 

 

𝐸𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒔 𝑀𝒐𝒅𝒆𝒍 

  𝜃=1.960756 (0.732) 
 𝑝̂ = 4.076548( 11.92)                    

𝑎̂ = 19.937428 ( 30.430)                        
  𝑏̂= 1.269832 (0.9)      
 

KWMOL 

 𝜃  =  0.5392642( 0.049)     L 

𝜃 = 0.02825 (0.0107)  𝛽̂ =  3.62766(0.297)       PL 

 𝜆̂ =   0.32673(  0.0411) E 

𝛼̂=0.3016883(0.0079) 𝜆̂ = 5.0505 ( 0.455)                             W 

 𝛽̂ = 0.882( 0.00038) 𝑝̂ = 3.641( 0.007)           
 𝜃 = 0.303 (0.00003) 

MOPL 

𝛼̂ = 0.2157 (  0.0302) 
𝑝̂ =  0.9733707( 0.0379) 

 𝜆̂ = 8.3546709( 0.969 )                            MOW 

  𝛽̂ = 3.085( .732) 

𝛾=2.733(1.58) 

𝜃 = 1.2238( 0.328)                      

  𝑎̂ = 2.991(2.571)       
  𝑏̂= 1.634(0.656)        

KWMW 

𝜃=0.077 (0.0017)   
   𝑎̂ =     (0.227) 0.7299  

  

 𝛽̂ = 3.86 (0.0026) 
 𝑏̂ = 0.173 ( 0.024)                                                  

KWPL 
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TABLE III.   THE STATISTICS−𝟐𝓵̂,AIC, CAIC, HQIC, BIC, 𝑾∗
AND 𝑨∗

 FOR THE STRENGTHS DATA.  

TABLE IV.   MLES AND THEIR CORRESPONDING STANDARD ERRORS (IN PARENTHESES) FOR THE BLADDER CANCER DATA. 

 

p-value KS 𝑨∗ 𝑾∗ HQIC BIC CAIC AIC −𝟐𝓵̂ Model 

0.225 0.131 0.920 0.165 39.098 44.299 36.416 35.727 13.863 KWMOL 

0.013 0.386 2.976 0.542 165.399 166.7 164.622 164.55 81.278 L 

0.145 0.144 1.179 0.214 35.0657 37.666 33.579 33.379 14.689 PL 

0.056 0.417 3.127 0.570 180.503 181.803 179.726 179.660 88.830 E 

0.108 0.152 1.303 0.237 36.099 38.699 34.613 34.413 15.206 W 

0.564 0.099 0.576 0.102 42.591 46.491 40.469 39.062 15.031 MOPL 

0.554 0.1 0.591 0.105 32.595 36.496 38.474 38.067 19.033 MOW 

0.429 0.110 0.671 0.117 39.679 46.180 36.517 35.464 12.732 KWMW 

0.0009 0.246 1.827 0.333 54.733 59.934 52.051 51.362 21.681 KWPL 

 
 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑀𝒐𝒅𝒆𝒍 

𝑎̂ = 2.193(0.879)                               𝑏̂= 25.556(0.124)    
𝑝̂=24.548(0.987)                               𝜃 = 79.643(0.983) 

KWMOL  

𝜃 =  0.99607(0.094)             L 

𝛽̂ =0.222 (0.0466)             𝜃 = 4.454(0.387) PL 

𝜆̂ = 0.663 (0.083)   E 

𝛼̂ = 5.780 ( 0.576)                            𝜆̂ = (0.0139)0.6143    W   

𝜃 = 1.090 ( 0.686)                              𝛽̂=2.857(0.748)        
 𝑝̂=14.826 (20.59)                

MOPL 

𝜆̂ = 3.202 (0.950)                              𝑝̂=15.628 (20.792)   
𝑎̂ = (0.196  )0.892  

MOW 

  𝜃=0.743 (1.169)                               𝑎̂ = 4.593( 4.1300 )      

 𝑏̂ = 1.15 (2.87)                                   𝛽̂=6.2166(2.580)     
 𝛤̂=0.0434 (0.0374)                                                               

KWMW 

 𝔟̂                          (0.0762) 0.230 = 𝔞̂ = ( 0.0191) 0.1432    
 𝛽̂= 5.7593 (0.0025)                           𝜃=0.368 (0.0025) 

KWPL 

 
 
 
 
 
 


